Sharp Singular Adams Inequalities in High Order Sobolev Spaces

نویسندگان

  • NGUYEN LAM
  • GUOZHEN LU
چکیده

In this paper, we prove a version of weighted inequalities of exponential type for fractional integrals with sharp constants in any domain of finite measure in R. Using this we prove a sharp singular Adams inequality in high order Sobolev spaces in bounded domain at critical case. Then we prove sharp singular Adams inequalities for high order derivatives on unbounded domains. Our results extend the singular Moser-Trudinger inequalities of first order in [4, 29, 24, 8] to the higher order Sobolev spaces W n m and the results of [30] on Adams type inequalities in unbounded domains to singular case. Our singular Adams inequality on W 2,2 ( R 4 ) with standard Sobolev norm at the critical case settles a unsolved question remained in [37].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ec 2 01 1 SHARP ADAMS TYPE INEQUALITIES IN SOBOLEV SPACES

The main purpose of our paper is to prove sharp Adams-type inequalities in unbounded domains of R for the Sobolev space W n m (R) for any positive integer m less than n. Our results complement those of Ruf and Sani [28] where such inequalities are only established for even integer m. Our inequalities are also a generalization of the Adams-type inequalities in the special case n = 2m = 4 proved ...

متن کامل

Symmetrization and Sharp Sobolev Inequalities in Metric Spaces

We derive sharp Sobolev inequalities for Sobolev spaces on metric spaces. In particular, we obtain new sharp Sobolev embeddings and FaberKrahn estimates for Hörmander vector fields.

متن کامل

On Trudinger-Moser type inequalities involving Sobolev-Lorentz spaces

Generalizations of the Trudinger-Moser inequality to Sobolev-Lorentz spaces with weights are considered. The weights in these spaces allow for the addition of certain lower order terms in the exponential integral. We prove an explicit relation between the weights and the lower order terms; furthermore, we show that the resulting inequalities are sharp, and that there are related phenomena of co...

متن کامل

Log–sobolev Inequalities and Regions with Exterior Exponential Cusps

We begin by studying certain semigroup estimates which are more singular than those implied by a Sobolev embedding theorem but which are equivalent to certain logarithmic Sobolev inequalities. We then give a method for proving that such log–Sobolev inequalities hold for Euclidean regions which satisfy a particular Hardy–type inequality. Our main application is to show that domains which have ex...

متن کامل

Hardy inequalities with optimal constants and remainder terms ∗

We show that the classical Hardy inequalities with optimal constants in the Sobolev spaces W 1,p 0 and in higher-order Sobolev spaces on a bounded domain Ω ⊂ R can be refined by adding remainder terms which involve L norms. In the higher-order case further L norms with lower-order singular weights arise. The case 1 < p < 2 being more involved requires a different technique and is developed only...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011